Nomor 1 DIketahui suku banyak $ fx $ dibagi $ x^2 + x - 2 $ bersisa $ ax+b $ dan dibagi $ x^2 - 4x + 3 $ bersisa $ 2bx+a-1 $. Jika $ f-2 = 7 $ , maka $ a^2 + b^2 = .... $ A. $ 12 \, $ B. $ 10 \, $ C. $ 9 \, $ D. $ 8 \, $ E. $ 5 $ Nomor 2 Himpunan penyelesaian $ 16 - x^2 \leq x+4 $ adalah .... A. $ \{ x \in R -4 \leq x \leq 4 \} \, $ B. $ \{ x \in R -4 \leq x \leq 3 \} \, $ C. $ \{ x \in R x \leq -4 \text{ atau } x \geq 4 \} \, $ D. $ \{ x \in R 0 \leq x \leq 3 \} \, $ E. $ \{ x \in R x \leq -4 \text{ atau } x \geq 3 \} $ Nomor 3 Jika $ x_1 $ dan $ x_2 $ memenuhi persamaan $ 2\sin ^2 x - \cos x = 1 $ , $ 0 \leq x \leq \pi $ , maka nilai $ x_1 + x_2 $ adalah .... A. $ \frac{\pi}{3} \, $ B. $ \frac{2\pi}{3} \, $ C. $ \pi \, $ D. $ \frac{4}{3}\pi \, $ E. $ 2\pi $ Nomor 4 Jika $ \displaystyle \lim_{x \to -3} \frac{\frac{1}{ax}+\frac{1}{3}}{bx^3+27} = -\frac{1}{3^5} $ , maka nilai $ a + b $ untuk $ a $ dan $ b $ bulat positif adalah .... A. $ -4 \, $ B. $ -2 \, $ C. $ 0 \, $ D. $ 2 \, $ E. $ 4 \, $ Nomor 5 Jika $ fx $ fungsi kontinu di interval $ [1,30] $ dan $ \int \limits_6^{30} fx dx = 30 $ , maka $ \int \limits_1^9 f3y+3 dy = .... $ A. $ 5 \, $ B. $ 10 \, $ C. $ 15 \, $ D. $ 18 \, $ E. $ 27 \, $ Nomor 6 Pada balok dengan $ AB = 6, \, BC = 3 $ , dan $ CG = 2 $ , titik M, N, dan O masing-masing terletak pada rusuk EH, FG, dan AD. Jika $ 3EM = EH $ , $ FN = 2NG $ , $ 3DO = 2DA $ , dan $ \alpha $ adalah bidang irisan balok yang melalui M, N, O, perbandingan luas bidang $ \alpha $ dengan luas permukaan balok adalah .... A. $ \frac{\sqrt{35}}{36} \, $ B. $ \frac{\sqrt{37}}{36} \, $ C. $ \frac{\sqrt{38}}{36} \, $ D. $ \frac{\sqrt{39}}{36} \, $ E. $ \frac{\sqrt{41}}{36} $ Nomor 7 DIberikan kubus Sebuah titik P terletak pada rusuk CG sehingga $ CPPG=52$ . Jika $ \alpha $ adalah sudut terbesar yang terbentuk antara rusuk CG dan bidang PBD, maka $ \sin \alpha = .... $ A. $ -\frac{7\sqrt{11}}{33} \, $ B. $ -\frac{7\sqrt{11}}{44} \, $ C. $ \frac{7\sqrt{11}}{33} \, $ D. $ \frac{7\sqrt{11}}{44} \, $ E. $ \frac{7\sqrt{11}}{55} $ Nomor 8 Jika $ 3^x + 5^y = 18 $, maka nilai maksimum $ 3^ $ adalah .... A. $ 72 \, $ B. $ 80 \, $ C. $ 81 \, $ D. $ 86 \, $ E. $ 88 $ Nomor 9 Diketahui $ sx-y=0 $ adalah garis singgung sebuah lingkaran yang titik pusatnya berada di kuadran ketiga dan berjarak 1 satuan ke sumbu X. Jika lingkaran tersebut menyinggung sumbu X dan titik pusatnya dilalui garis $ x = -2 $ , maka nilai $ 3s $ adalah .... A. $ \frac{1}{6} \, $ B. $ \frac{4}{3} \, $ C. $ 3 \, $ D. $ 4 \, $ E. $ 6 $ Nomor 10 Jika kurva $ y = a-2x^2+ \sqrt{3}1-ax + a-2 $ selalu berada di atas sumbu X, bilangan bulat terkecil $ a - 2 $ yang memenuhi adalah .... A. $ 6 \, $ B. $ 7 \, $ C. $ 8 \, $ D. $ 9 \, $ E. $ 10 $ Nomor 11 Jika $ a+b-c=2 $ , $ a^2+b^2-4c^2 = 2$ , dan $ ab = \frac{3}{2}c^2 $ , maka nilai $ c $ adalah .... A. $ 0 \, $ B. $ 1 \, $ C. $ 2 \, $ D. $ 3 \, $ E. $ 6 $ Nomor 12 Jika $ S_n \, $ adalah jumlah sampai suku ke-$n$ dari barisan geometri, $ S_1 + S_6 = 1024 $ , dan $ S_3 \times S_4 = 1023 $ , maka $ \frac{S_{11}}{S_8} = .... $ A. $ 3 \, $ B. $ 16 \, $ C. $ 32 \, $ D. $ 64 \, $ E. $ 254 $ Nomor 13 Gunakan petunjuk C. Jika vektor $ \vec{u} = 2, -1, 2 $ dan $ \vec{v} = 4, 10, -8 $, maka .... 1. $ \vec{u} + k\vec{v} $ tegak lurus $ \vec{u} $ bila $ k = \frac{17}{18} $ 2. sudut antara $ \vec{u} $ dan $ \vec{v} $ adalah tumpul 3. $ \text{proy}_\vec{u} \vec{v} = 6 $ 4. jarak antara $ \vec{u} $ dan $ \vec{v} $ sama dengan $ \vec{u} + \vec{v} $ Nomor 14 Gunakan petunjuk C. Jika $ y = \frac{1}{3}x^3 - ax + b $ , $ a > 0 $ , dan $ a,b \in R $, maka .... 1. nilai minimum lokal $ y = b - \frac{2}{3}a^\frac{3}{2} $ 2. nilai maksimum lokal $ y = b + \frac{2}{3}a^\frac{3}{2} $ 3. $ y $ stasioner saat $ x = a^\frac{1}{2} $ 4. naik pada interval $ \left[ -\infty , -a^\frac{1}{2} \right] $ Nomor 15 Gunakan petunjuk C. Jika $ \alpha = -\frac{\pi}{12} $ , maka .... 1. $ \sin ^4 \alpha + \cos ^4 \alpha = \frac{6}{8} \, $ 2. $ \sin ^6 \alpha + \cos ^6 \alpha = \frac{12}{16} \, $ 3. $ \cos ^4 \alpha = \frac{1}{2} -\frac{1}{4}\sqrt{3} \, $ 4. $ \sin ^4 \alpha = \frac{7}{16} - \frac{1}{4}\sqrt{3} \, $
Nah berikut ini soal UTS-nya: Soal UTS IPA kelas 8 semester Soal UTS IPA kelas 8 semester 2.doc. Itulah yang dapat kami bagikan terkait materi ipa ktsp untuk kelas 8 SMP yang sengaja kami perlengkap dengan soal UTS-nya. Semoga keduanya bermanfaat dan dapat menunjang aktivitas pembelajaran IPA di kelas masing-masing.
SOAL SIMAK UI MATEMATIKA IPA 2017 Berisi soal-soal SIMAK UI Mata pelajaran Matematika IPA tahun 2010 β 2017. Soal βsoal ini merupakan soal asli naskah asli yang terdiri dari Soal Matematika IPA SIMAK UI tahun 2010, Soal Matematika IPA SIMAK UI tahun 2011, Soal Matematika IPA SIMAK UI tahun 2012, Soal Matematika IPA SIMAK UI tahun 2013, Soal Matematika IPA SIMAK UI tahun 2014, Soal Matematika IPA SIMAK UI tahun 2015, Soal Matematika IPA SIMAK UI tahun 2016, dan Soal Matematika IPA SIMAK UI tahun 2017. Soal-soal ini dapat digunakan oleh adik-adik SMA atau para guru SMA sebagai latihan untuk persiapan SIMAK UI tahun 2018, soal ini dapat digunakan gratis, tetapi harap mencantumkan link pembuat soal ini atau tidak diubah demi menghargai proses pembuatan/penulisan kembali soal ini. Soal-soal ini dapat anda gunakan sebagai latihan persiapan SIMAK UI tahun 2018. Kami berharap dengan pembagian soal-soal ini dapat berkontribusi dalam menyebarkan ilmu pengetahuan kepada masyarakat indonesia. Semoga soal ini bermanfaat untuk anda. Salam Perjuangan! Bimbingan Alumni UI. Download File Baca yang lainnya Matematika IPA SIMAK UI 2010 - Bimbingan Alumni UI Matematika IPA SIMAK UI 2011 - Bimbingan Alumni UI Matematika IPA SIMAK UI 2012 - Bimbingan Alumni UI Matematika IPA SIMAK UI 2013 - Bimbingan Alumni UI Matematika IPA SIMAK UI 2014 - Bimbingan Alumni UI Matematika IPA SIMAK UI 2015 - Bimbingan Alumni UI Soal Matematika IPA SIMAK UI 2016 - Bimbingan Alumni UI Matematika IPA SIMAK UI 2017 - Bimbingan Alumni UI Matematika IPA SIMAK UI 2017 - Bimbingan Alumni UI1 Matematika IPA SIMAK UI 2018 - Bimbingan Alumni UI - 1 Matematika IPA SIMAK UI 2018 - Bimbingan Alumni UI - 2 Matematika IPA SIMAK UI 2019 - Bimbingan Alumni UI
KunciJawaban Soal Simak Ui 2017 from material objek material merupakan segala sesuatu yang dijadikan pemikiran, yang diselidiki, atau segala sesuatu yang bisa dipelajari (mudhofir, 2010). Kedua objek tersebut harus ada dalam bidang keilmuan (mudhofir, 2010). Kunci Jawaban Uji Kompetensi Ipa Kelas 9 Semester 1 Bab 1
Itulahgambaran umum mengenai contoh soal tpa matematika dan pembahasannya. untuk mempermudah anda dalam menghadapi tes potensi akademik, ada baiknya anda mengikuti pelatihan tpa bappenas. mungkin bagi sebagian orang, mengikuti pelatihan tpa bappenas adalah hal yang tidak penting. tetapi sebenarnya pelatihan tpa simak s2 ui sangat bermanfaat
Soaldan Pembahasan Suku Banyak (Polinomial). Suku banyak merupakan soal yang selalu muncul pada setiap Ujian Masuk Perguruan Tinggi Negri, dan memiliki berbagai macam variasi soal.
Contohsoaltpabappenaspdf contohsoaltpa matematika dan pembahasannya tes potensi akademik atau yang sering disingkat dengan read more. Ebook contoh soal tes potensi akademik tpa snmptn bappenas s2 s3 gratis online ver1 download as pdf file (. pdf), text file (. txt) or read online. bappenas merupakan akronim dari badan perencanaan pembangunan nasional yang
BeliBuku Soal dan Pembahasan SIMAK UI Matematika IPA Complete Edition. Harga Murah di Lapak andini. Pengiriman cepat Pembayaran 100% aman. Belanja Sekarang Juga Hanya di Bukalapak.
bWCcW2. b30qx82eqx.pages.dev/439b30qx82eqx.pages.dev/224b30qx82eqx.pages.dev/287b30qx82eqx.pages.dev/138b30qx82eqx.pages.dev/249b30qx82eqx.pages.dev/342b30qx82eqx.pages.dev/499b30qx82eqx.pages.dev/428
pembahasan soal simak ui 2017 matematika ipa